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Abstract

Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched
structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped.
The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching
(domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have
been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We
have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that
governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We
show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the
domain shape are based on experimental data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching
between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of
different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while
slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate
pattern that correspond to the observed branching modes.
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Introduction

Branched structures are ubiquitous in nature, and the

mechanism of their formation has been investigated for decades

both in experimental [1–3] and theoretical studies [4,5]. Studies

some 50 years ago showed that the dimension of the airway in

adult lungs depends exponentially on the branch order very well

up to the 10th generation [6]; based on subsequent analysis lungs

were suggested to be fractals, with fractal dimension close to 3 for

the adult human lung [7–14]. Various algorithms that generate

lung trees with morphometric characteristics similar to adult

mammalian lungs have been reported [4,5,15,16]. In a geomet-

rically realistic model Kitaoka and co-workers required nine basic

and four complementary rules to fill the 3-dimensional thoracic

cavity with a branching model [16]. The rules that they defined

were to a large part similar to those that were later discovered in a

careful experimental study of the growing lung [17]. In this later

experimental study it was shown that the branching process during

lung development is remarkably stereotyped and that the

branched tree is generated by the sequential use of three

geometrically simple modes of branching, i.e. domain branching,

planar bifurcation, and orthogonal bifurcation [17]. Errors like

branch displacement are observed in less than 1% of all branching

events [17]. Branching is thus not a stochastic process, but must be

controlled. This raises the question of how the information

required to generate a structure of such complexity is encoded in

the genome.

Since branched structures are created by recursive processes, a

limited number of proteins can, in principle, control all of the

branching in the lung from the trachea to the terminal bronchioles

[3]. Genetic studies have led to the identification of key regulatory

genes and morphogenes that control lung development, most

importantly Fibroplast growth factor (FGF)10, Sonic hedgehog

(SHH), and Bone morphogen protein (BMP)4 [1,2,18–23]

(Figure 1a). FGF10 is expressed in the distal mesenchyme around

the epithelial bud tip and is essential for the lung bud formation,

proliferation of the endoderm, and directional outgrowth

[3,24,25]. FGF10 signals mainly through the epithelial FGF

receptor FGFR2, and inactivation of FGFR2 in the lung

epithelium results in the disruption of lobes and small epithelial

outgrowths that arise arbitrarily along the main bronchi [25]. FGF

induces the expression of SHH, BMPs, and Sprouty which in turn

limit the expression and signalling of FGFs [24,26–29]. SHH

signals through its receptor Patched (Ptc), and affects FGF10 and

BMP4 activity. While many studies show that BMPs regulate lung

development their detailed effects have been difficult to disentan-

gle [1]. Adding BMP4 to organ cultures of the whole embryonic

lung promotes branching morphogenesis and increases the

number of peripheral epithelial buds [30]. Addition of exogenous

BMP4 protein to mesenchyme-free endoderm cultured in vitro with

FGFs, on the other hand, inhibits proliferation, secondary budding

and differentiation [28,29,31]. Both overexpression of BMP4 and

a conditional knock-out result in similar lung phenotypes [32,33],

suggesting that correct BMP4 levels are essential for normal lung
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development. These may be maintained by the many negative

feedbacks that control BMP activity.

Theoretical studies suggest that physical forces can play a key

role in lung branching morphogenesis [34–37]. Recent studies

demonstrate that the mechanical stresses do influence branching

morphogenesis [38]. Increased internal pressure leads to an

increase of lung branching in in vitro cultures [39], and cellular

contractility is critical for branching morphogenesis of the lung.

Inhibiting actomyosin-mediated contractility in whole lung

explants decreases branching [40], whereas activating contractility

increases branching [41]. A qualitative model that described

epithelial branching in culture experiments showed that both the

mechanical strength of the cytoskeleton and the reaction-diffusion

kinetics can in principle affect branching morphogenesis [36,42].

Work on mammary glands further suggests that the geometry of

tubules might dictate the position of branches [43].

Computational models can explore the impact of the signaling

interactions, physical forces and domain geometries and thus

discern a minimal set of rules and interactions from which the

observed pattern can emerge. Hirashima and co-workers recently

proposed a simple three component model on a 2-dimensional

lung bud cross-section [44] to explain the mechanistic basis of

different branching modes. The model focused on the interactions

between SHH, transforming growth factor(TGF)-beta and FGF10

and suggests that domain length and shape can have a strong

impact on the distribution of morphogenes and the selection of

branching points in the developing lung. This prediction, however,

hinges on a particular distribution of TGF-beta (constant at the

stalk) and SHH (fixed at the tip) and is valid only with a particular

type of boundary condition (impermeable lung boundaries) which

is unlikely to apply (Figure S1).

Turing-type models have been suggested as an alternative to

explain the emergence of regular patterns as observed during lung

branching morphogenesis [45,46]. However, to our knowledge no

such mechanistic Turing model has yet been formulated for the

lung. Here we present a reaction-diffusion model that we developed

based on available information from the literature. The Turing-type

model reproduces available experimental data both in wild type and

mutant mice and provides a mechanistic explanation for the

different lung branching types. We further show that the rate with

which the lung bud grows can determine the branching mode.

Model

We sought to develop a model for the core signaling module that

regulates branch point selection during lung development. Many

proteins have been implicated in the branching process, but FGF10

and SHH appear to play the most prominent roles [1,19]. Culture

experiments have identified FGF10 as one of the key regulators of

lung branching and outgrowth [20,29,47]. Another important

protein is SHH which signals via its receptor PTC [48,49]. In spite

of its importance we will not include BMP4 in this model [30,50].

This is because BMP4 and SHH both have similar impacts on

FGF10 in that both are positively regulated by FGF10 while they

negatively affect FGF10 upon binding to their receptors. BMP4,

however, cannot directly feed back onto Fgf10 expression because

its main receptor, Alk3 [51], is expressed only in the epithelium

Figure 1. A graphical summary of the modelled interactions of the signaling factors in lung bud during morphogenesis. a) FGF10 is
transcribed at high levels in the distal mesenchyme (grey) and experiments suggest that FGF10 promotes both the proliferation of the endoderm and its
outward movement (green arrow). FGF10 stimulates the expression of SHH in the epithelium (red). SHH reversibly binds its receptor Ptc1 which is
expressed in the mesenchyme (grey). SHH-Ptc binding results in the repression of FGF10 expression. b) The idealized computational domain comprises a
2D crossection along the cylinder axis of symmetry. The epithelium and the mesenchyme are shown in red and grey, correspondingly. SHH and FGF10
(but not Ptc) can diffuse freely (Dext) in the interstitial space (4) and lumen (1). The time-dependent height of the cylinder is h(t)~h0zvg|t.
doi:10.1371/journal.pcbi.1002377.g001

Author Summary

Most organs of higher organisms, such as the vascular
system, lung, kidney, pancreas, liver and glands, are heavily
branched structures. The branching process during lung
development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by
the sequential, non-random use of three geometrically
simple modes of branching. While the branching sequence
is identical in mice of identical genetic background it differs
between mouse strains. This suggests that the positioning
of branch points and the type of branching sensitively
depends on information encoded in the genome. Encoding
every branching point independently in the genome would
require a large number of genes, and it is more likely that a
recursive, self-organized process exists that determines the
patterning. While many regulatory molecules have been
identified an integrated understanding of the regulatory
network (program) is missing. Based on available experi-
mental data we have developed a model for lung
branching. The model correctly predicts branching pheno-
types in mutants and suggests that also the growth speed
of the lung tip can affect the positioning and type of the
next branching event.
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while FGF10 is expressed in the mesenchyme [1]. Any direct

negative impact of BMP4 on FGF10 signaling must thus arise from

its interference with FGF10-dependent signaling in the epithelium

rather than with Fgf10 expression. As such BMP4 signaling may

reduce the extent to which FGF10 promotes Shh expression or may

affect other effectors that impact on Fgf10 expression. Since we are

interested only in the core patterning mechanism we will ignore the

modulating impact of BMP4 in this work, and focus on FGF10,

SHH and its receptor Patched (Figure 1a).

The simulated cross-section of the lung tip contains about 10–20

epithelial cells (Figure 1b). Previous studies have successfully

described the in vivo distribution of morphogens with continuous

reaction-diffusion equations on a domain containing around 10 cells

[52–54]; we therefore expect that continuous reaction-diffusion

equations are also adequate in our study of the lung tip cross-

section. Both FGF (which we denote by F ) and SHH (which we

denote by S) can diffuse rapidly [52–54] and we write DF and DS

for the diffusion coefficients. Patched-1 receptors (denoted by P) are

membrane proteins and are therefore restricted to the surface of

single cells where they diffuse with a much reduced diffusion

coefficient DP%DS,DF [55,56]. The exact details of this restricted

diffusion appear, however, not to qualitatively affect the Turing

pattern since we obtain qualitatively similar Turing pattern in a 2D

continuous plane and when we solve the Turing model on a domain

with an array of cells where receptors can diffuse only on the surface

of the cells and the ligand only in the volume between the cells

(Figure S2). Similarly simulations in which the computational

domain is split into domains of cell size with Ptc spatially restricted

to each cell give qualitatively similar results while being computa-

tionally much more costly (Figure S3). This may be accountable to

the fact that during the receptor half-life time (t1=2~ln(2)=
dP~670 s) a receptor diffuses only roughly the distance of one

cell diameter (l~(2Dt1=2)0:5^10 mm). In conclusion a mean-field

approximation with a small, non-zero value for the receptor

diffusion coefficient appears to provide a good and computationally

efficient approximation. Finally, we note that receptors can move

also passively with migrating and dividing cells such that the

effective physiological Ptc diffusion coefficient is larger than the

diffusion coefficient of Ptc within the cell membrane. We will write

DD½:� for the diffusion fluxes where D denotes the Laplacian

operator in Cartesian coordinates, and ½:� concentration. The

characteristic length of gradients depends both on the speed of

diffusion and the rate of morphogen removal. In the absence of

contrary experimental evidence we will assume the simplest

relation, linear decay, at rates dk½k� for all components (i.e.

k~F ,S,P,C).

FGF10, SHH and Ptc-1 regulate each other as graphically

summarized in Figure 1a. Thus FGF10 expression is repressed by

a complex of SHH bound to Ptc-1. We describe the inhibition of

FGF10 production by the SHH-Ptc complex, C, by a Hill-type

function, rF

K
n

F

½C�nzK
n

F

, with Hill constant KF , Hill coefficient n,

and rF as the maximal rate of FGF10 production in the absence of

SHH and obtain the following equation describing the spatio-

temporal dynamics of the FGF10 concentration

½ _FF�~ DFD½F�|fflfflfflffl{zfflfflfflffl}
diffusion

z rF

K
n

F

½C�nzK
n

F|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
production

{dF½F�|fflfflfflffl{zfflfflfflffl}
degradation

, ð1Þ

where we use ½ _XX�~ L½X�
Lt

as short-hand notation for the time

derivative.

FGF10 stimulates the expression of SHH and the rate of SHH

expression is therefore best described by a Hill-type function,

rS

½F�n

½F�nzK
n

S

with Hill constant KS and Hill coefficient n. SHH is a

multimer and one SHH molecule can therefore bind at least two

receptors [57]. We therefore use as rate of complex formation

kon½S�½P�2 and koff [C] as rate of dissociation and obtain for the

SHH dynamics:

½ _SS�~ DSD½S�|fflfflffl{zfflfflffl}
diffusion

z rS

½F�n

½F�nzK
n

S|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
production

{dS½S�|fflfflffl{zfflfflffl}
degradation

{kon½P�2½S�zkoff ½C�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complexformation

ð2Þ

The expression of Ptc-1 is enhanced in response to binding of

SHH to the Ptc-1 receptor, and the rate of Ptc-1 expression must

therefore be a function of the concentration of the complex, C, i.e.

m(½C�). Free Ptc-1 is removed by complex formation and restored

by its dissociation such that the spatio-temporal dynamics of Ptc

can be described by

½ _PP�~ DPD½P�|fflfflfflffl{zfflfflfflffl}
diffusion

z m(½C�)|fflffl{zfflffl}
production

{dP½P�|fflfflfflffl{zfflfflfflffl}
degradation

{2kon½P�2½S�z2koff ½C�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complex formation

ð3Þ

If we assume that the diffusion of the membrane-bound SHH-Ptc-

1 complex is slow compared to its binding and turn-over kinetics

then we can neglect the diffusion operator in the equation and

write for the dynamics of the complex C

½ _CC�~ kon½P�2½S�{koff ½C�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
complex formation

{dC½C�|fflfflfflffl{zfflfflfflffl}
degradation

: ð4Þ

If the dynamics of the complex are fast compared to those of the

other components then we can introduce a quasi steady state

approximation, and obtain for the concentration of bound

receptor [C]SS:

½C�SS~
kon

koffzdC

½P�2½S�~C½P�2½S� ð5Þ

where C~
kon

koffzdC

. The concentration of bound receptor, [C], is

thus proportional to ½P�2½S�. We will further use a linear

approximation as the simplest possible relation for the receptor

production rate m(½C�), and write m(½C�)~rPzv½C�, where rP and

v are zero and first order rate constants, respectively.

Our model is then based on the follwoing set of three PDEs of

reaction-diffusion type:

½ _SS�~DSD½S�zrS

½F�n

½F�nzK
n

S

{dCC½P�2½S�{dS½S� ð6Þ

½ _PP�~DPD½P�zrPz(v{2dC)C½P�2½S�{dP½P� ð7Þ

½ _FF�~DFD½F�zrF

K
n

F

(C½P�2½S�)nzK
n

F

{dF ð8Þ
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We note that if ½F�&KS, v~3dC, and dS~0 then equations (6)–(7)

reduce to the classical Schnakenberg model [58].

Computational Domain Geometry, Boundary and Initial
Conditions

The lung tip can be represented as a cylinder with an internal

radius of r0~50mm and an external radius of r1~100 mm; the

thickness of the lung epithelium can be estimated from microscopy

data as lep~5–10 mm [32,59]. To keep the calculations as simple

as possible while retaining a realistic geometry we use a 2D slice in

Cartesian coordinates along the lung bud axis of symmetry as

shown in Figure 1b. SHH is produced in the epithelium [1,2] and

FGF and Ptc are produced in the surrounding mesenchyme [1,2].

There is no experimental evidence that the mesenchyme or

epithelium are surrounded by any insulating layer and accordingly

the boundaries are permeable in our simulations. SHH and FGF

can thus diffuse unhindered outside of the epithelium and the

mesenchyme as well as in the lumen which is filled with a liquid.

The unhindered diffusion of SHH and FGF in the lumen and

interstitial space is reflected by the diffusion coefficient Dext which

is much larger than the diffusion coefficients, Di, that apply in the

tissue; the receptor Ptc is a membrane protein and therefore

cannot diffuse into the cavities. The concentrations of FGF and

SHH infinitely far from the mesenchyme are assumed to be zero.

We note that the predictions of our model are independent of the

boundary conditions and similar results are obtained in simula-

tions with zero-flux boundary conditions at the boundary of the

lung tissue (see section Robustness of the Observed Pattern
for details). We start all our simulations with no species present, i.e.

we are setting all concentrations to zero at t~0.

Modelling Domain Growth
We consider two modes of 1-dimensional growth along the lung

stalk: (1) uniform growth (stretching) of the domain and (2) local

growth at the tip of the lung. To conserve mass (rather than

concentration) the reaction-diffusion equations (Eqs 6–8) must be

expanded to include the advection and dilution terms [60], i.e.

½ _XX�~DxD½X�zR(½X�)z+u½X�z+½X�u ð9Þ

where u denotes the growth speed. For homogeneous growth at

rate �vvg we then have

½ _XX�~DxD½X�zR(½X�)z
_hh

h
½X�z

_hh

h
+½X�~ L½X�

Lt

z
vg

h0zvgt
½X�z vg

h0zvgt

L½X�
Ly

ð10Þ

where h0 denotes the initial height of the lung tip, h(t)~h0zvgt

the height of the lung tip, and t denotes time.

Parameter Values
The domain size and the time scale of the process are well

established [17,24]. The measurement of the in vivo kinetic

parameter values on the other hand is complicated and typically

parameter values are known only from experiments in related

systems [52–54]. To reduce the number of unknowns we non-

dimensionalize the equations and thereby remove five indepen-

dent parameters. We use r0, the internal radius of the lung bud, as

characteristic length scale of the model and DF=r2
0 as its

characteristic time scale. Moreover, we non-dimensionalize the

FGF concentration with respect to the Hill constant KS, i.e.

F~½F�=KS, and the SHH and Ptc-1 concentrations with respect

to c0, i.e. S~½S�=c0, P~½P�=c0 with c0~
KF

C

� �1=3

. Equations 6–

8 can then be rewritten in dimensionless form; the dimensionless

parameters and variables are summarised in Table S1.

_SS~DSDSzrS

Fn

Fnz1
{dSS{dCP2S

_PP~DPDPzrP{dPPz(n{2dC)P2S

_FF~DFzrF

1

(P2S)nz1
{dFF ð11Þ

It should be noted that the Laplacian is now with respect to the

non-dimensional space variables and _XX~
LX

Lt
.

Five parameters have been removed and the patterning

mechanism no longer depends on absolute values of diffusion and

decay constants, but only on the relative diffusion coefficients and the

relative decay rates. Similarly, the absolute concentrations do not

matter, but only the relative concentrations (as a result from the

relative expression and decay rates) relative to the Hill constants and

the effective binding constant C. The value of the Hill coefficient was

set to n~2 to account for possible cooperatively effects; however, the

model gives very similar results with other values of n (Figure S4). It

should be noted here that the stochiometry of SHH and Ptc complex

PmSn at which patterning is observed is not limited to the case

m = 2, n = 1 that we analyse in this manuscript. Similar patterns are

observed as long as mw1, nw1 (see Figure S5 for details).

Numerical Solution of PDEs
The PDEs were solved with finite element methods as

implemented in COMSOL Multiphysics 4.1. COMSOL Multi-

physics is a well-established software package and several studies

confirm that COMSOL provides accurate solutions to reaction-

diffusion equations both on constant [61] and growing two-

dimensional domains [62–64]. Mesh and the time step were

refined until further refinement no longer resulted in noticeable

improvements as judged by the eye (Figure S6). When simulations

were performed on an open domain the bulk solution conditions

was implemented at a distance 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtmax

p
from the mesenchyme,

where tmax is the maximum time of model evaluation. It was

shown that beyond this, the effects of diffusion in not important on

the experimental time scale [65].

Local Stability Analysis
A local stability analysis was performed in the following way:

parameter values were taken as indicated in Table 1, further

parameters were varied one by one until qualitative change of

pattern were observed (different number of FGF, SHH and Ptc

spots). Accuracy of parameter value estimation was 10% or higher.

Robustness to Parameter Variability
The approach to estimate robustness to spatial parameter

variability was adapted from ref [66]. Parameter values were

assumed to be given by the formula k~k0|(1zj(x,y)), where

j(x,y) is normally distributed random function with a mean value

of zero and half width h. The half width of the distribution was

equal for all parameters, except geometrical which were not

varied.

Branch Mode Selection during Lung Development
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Results

Morphogen Distribution in the Steady-State
Since the model is an example of a Schnakenberg Turing-type

model [58] we expected to find parameter ranges for which we

would observe the emergence of FGF patterns on the lung-shaped

domain. Indeed such pattern emerged from spatially uniform

initial conditions. We note that the observed distribution and

expression pattern correspond overall rather well to experimental

observations, but since quantitative data on protein concentration

distributions are not available we have to restrict ourselves to a

qualitative discussion of distribution patterns. We therefore

deliberately left out scale bars for better readability. Dark red

colours denote the highest concentrations while dark blue colours

denote the lowest concentrations. FGF10 induces SHH expression

and SHH expression is highest in the epithelium adjacent to the

mesenchyme with high FGF10 concentrations (Figure S7b,e) as

also observed in experiments [24,32,48,67]. In situ data seem to

suggest that the expression domains of Ptc-1 and Shh coincide

[24,68,69] but the spatial resolution of the data may be too low to

reveal the closed juxtaposition predicted by the model.

Different parameter ranges resulted in steady-state patterns with

FGF10 either centered at the lung bud tip (Figure 2a) or

concentrated towards the side of the tip (Figure 2d). Experiments

have previously demonstrated that lung tips grow towards regions

with a high FGF10 concentration [59] and accordingly FGF10

centered at the lung tip will support further outgrowth of the lung

tip while FGF10 centered at the sides will induce lateral

outgrowth. We thus suggest that the two types of patterns that

we observe are likely to correspond to the different branching

modes, i.e. lateral branching would thus correspond to the FGF10

pattern in Figure 2a with FGF10 spots at the tip and at the side,

while bifurcation would correspond to the FGF10 pattern in

Figure 2d with FGF10 centered only to the side but towards the

tip. Our model cannot reproduce domain branching or the

difference between planar and orthogonal bifurcations as these

events are intrinsically three dimensional. Here we should note

that the model generates pattern similar to those discussed above if

extended to the third dimension (Figure S8). However, a much

wider range of patterns is possible in 3D as will be discussed in

Table 1. Values of dimensionless parameters used for
simulations.

parameter
domain 2
(epithelium)

domain 3
(mesenchyme)

domain 1 and 4
(cavities)

DS 5 5 40

DF* 1 1 40

DP 0.02 0.02 -

dC 1.6 1.6 -

v - 5 -

dS 0.2 0.2 0.2

dP - 1 -

dF 5 5 5

rS 1600 - -

rF - 3.5 -

rP - 0.6 -

Domain parameters: lep~0:2, r1 = 2, h = 1. n~2.
*Note that the diffusion coefficient of FGF in epithelium and inner radius of
mesonchyme r0 are used to nondimensionalise model.
doi:10.1371/journal.pcbi.1002377.t001

Figure 2. The steady state distributions of FGF10, SHH and receptor Ptc concentrations. The steady state distributions of (a,d) FGF10,
(b,e) SHH, and (c,f) Ptc for parameter values as in Table 1 (a–c) or with rS~1300 (d–f). The upper panel presents an example of FGF10 distribution
during the lateral branching mode, while the lower panel provides an example for FGF10 distribution during a bifurcation branching mode. Note that
the expression patterns of SHH, FGF and Ptc are shown in Figure S7.
doi:10.1371/journal.pcbi.1002377.g002

Branch Mode Selection during Lung Development
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detail in a separate manuscript (Menshykau and Iber, in

preparation). Going forward we will restrict the presentation to

the FGF10 concentration pattern as these appear to mainly guide

lung outgrowth.

Robustness of the Observed Pattern
Since the parameters are difficult to determine accurately in

experiments it was important to check how sensitive our results

would be to variations in parameter values. We carried out a local

stability analysis by altering each parameter value independently.

Here we note that the non-dimensional parameters represent

relative dimensional parameters. The patterning mechanism is thus

robust to a parallel change in the parameter pairs listed in Table S1,

and the value of most relative parameters can be changed by 20%–

30% without changing the type of the observed pattern (Figure 3).

At the same time almost each parameter (except for the degradation

rate of the receptor, dP) can be employed to switch the pattern

between lateral branching (Figure 3, blue) and bifurcation mode

(Figure 3, red). The mechanism thus appears to be robust to noise

yet sensitive to regulation. We note that virtually all parameter

values could be affected by the many additional interactions that

have been described but that we chose to ignore in this simple model

that focuses only on the core of the regulatory mechanism.

The domain that we chose to solve our model on is an

idealization of realistic domains. We therefore also checked the

impact of domain deformations (Figure 4). The lateral branching

mode is indeed robust to deformations of the domain geometry, i.e.

to an increased radius of the epithelium (Figure 4a), the

mesenchyme (Figure 4b) or a truncated bud (Figure 4c). Similarly,

the boundary conditions are not critical and similar pattern emerge

with zero-flux boundary conditions both in the lateral (Figure 4 d)

and in the bifurcation mode (Figure 4 e). Linear stability analysis of

Equation 11 carried out with parameter values as used to simulate

lung branching on the domain with no-flux boundary conditions

(Figure 3 d, e) showed that pattern arise because of the diffusion

driven instability and therefore Turing type.

Branching Mode Selection on a Growing Domain
Since lung buds branch as they are growing out we wondered how

the growth speed and type would affect patterning. Figure 5 shows

the FGF10 distribution on a growing lung bud where growth is

restricted to the lung tip. At vg~0:08 the concentration of FGF is

high at the tip of the growing lung, and further regions of high

concentration of FGF10 appear at the lung stalk as the lung

grows out (Figure 5 a). Importantly new regions of high FGF10

concentration emerge close to the tip. This pattern corresponds to

the lateral branching mode. At a 4-fold lower growth speed,

vg~0:02 (Figure 5 b), regions of high FGF concentration appear

only at the sides of the lung tip but are absent from the tip itself. This

pattern would thus correspond to the bifurcation mode of branching.

If the lung bud grows uniformly in the entire domain the

patterning is similar with an important difference: regions with

high FGF10 concentration can appear at any position within the

domain (Figure S9). Both the insertion of branches directly behind

the tip and the insertion of new branches at the proximal side of

the stalk have been observed. Similarly, both uniform proliferation

(Metzger and co-workers, personal communication), [17] and

enhanced proliferation at the tip [70] have been observed. Those

experiments that report a concentration of proliferating cells at the

tip find 2.5 times more BrdU-stained cells (a marker for dividing

cells) at the tip than in the stalk [70], and in our model branching

points appear behind the tip as long as the growth rate in the tip is

Figure 3. Local stability analysis. The blue and red regions
represent ranges of the dimensionless parameters for which lateral
and planar bifurcation modes of branching are observed respectively.
The parameter values in Table 1 are used as a reference point (black
solid line), and each parameter was perturbed independently by a
factor r as indicated. The green-dashed circles mark halved and doubled
parameter ranges. dS : * The lateral branching mode (blue) is stable up
to value 2.3 times the reference value of dS, the bifurcation mode of
branching is observed in the range from 2.3 to 7-times the reference
value given in Table 1.
doi:10.1371/journal.pcbi.1002377.g003

Figure 4. The FGF10 pattern is robust to changes in the domain
geometry and boundary conditions. The steady state pattern of
FGF10 on the computational domain has (a) an increased radius of
epithelial bud, i.e. r0 at the tip increased by the25%; (b) an increased
radius of the mesenchymal bud, i.e. r1 at the tip increased by the 10%;
(c) a truncated stalk, i.e. h0 at the stalk is truncated by 80%. (d,e) The
steady state pattern of FGF10 with no flux boundary conditions at the
lung boundary: (d) all production and degradation rate constant are
equal to 0.5 and 1.7 of that presented in Table 1 (lateral branching
mode), (e) constants are equal to 0.7 and 1.5 of that presented in Table 1
(bifurcation mode). Decrease of production rates and increase of
degradation rates are imposed to compensate for the absence of
morphogen flux from the epithelium and mesonchyme to the lumen
and interstitial space when no-flux boundary conditions are imposed at
the lung border. All parameters as in Table 1 unless otherwise stated.
doi:10.1371/journal.pcbi.1002377.g004
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at least 2–3 times larger than in the stalk. We therefore suggest that

different lung branches may be growing differently, and that this

may explain the different positions at which new branches emerge

relative to the tip.

Earlier we showed that the pattern on a constant domain is robust

to small parameter variations. To test that the pattern is robust to

small random changes also on growing domains we explored the

patterning mechanism if parameter values are drawn from a

Gaussian distribution with different standard deviations (see Model

section). Figure S10 shows that the domain branching mode remains

stable as long as standard deviations of the random variables do not

exceed 0.2–0.3 of the reference value presented in Table 1.

Mutants
An important test for the suitability of a mathematical model is

its consistency with a wide range of independent experimental

observations. Lung branching morphogenesis has been studied

intensively and a large body of experimental results exists to test

the model with. These include a large number of in part

counterintuitive mutant phenotypes of key signaling proteins in

mice [1]. Since our model is restricted to FGF, SHH and Ptc-1 we

will focus on mutations in those genes. The computational model

reproduces all full knock-outs. However, these results are trivial

since the lungs in mutants with fully knocked-out genes are

severely truncated or do not form at all [7,49,71–73]. Given the

key importance of all three components in the model no pattern is

observed if any component is eliminated.
FGF10. Experimental evidence suggests that, in addition to its

critical roles during lung initiation, FGF10 continues to have

important functions also later in lung development. Conditional

inactivation of FGF10 in lung mesenchyme resulted in smaller

lobes with a reduced number of branches [25]. Interestingly, a

25% reduction in FGF10 expression not only reduces the number

of branches but increases the distance between branching points

by 50%. [74]. We observe a similar effect in our simulations where

a 25% reduction in FGF10 expression (rF~2:6) increases the

distance between branching points (Figure 6c). Changes in the

FGF10 concentration could, of course, affect the growth speed.

However, simulations shows (Figure S11) that at any sensible

growth rate mutant lungs have less branching points with an

increased distance between them if compared to WT lungs.

FGF10 is expressed only in the mesenchyme, but mesenchyme

is not strictly required for lung branching. Thus cultures of isolated

endoderm incubated in MatrigelTM substratum still migrate and

grow towards an FGF-loaded bead and form branches [28].

This result is in agreement with our model. At constant FGF

concentrations [F] as observed in lung cultures the expression of

SHH proceeds at contant rate rS

Fn

Fnz1
and the patterning

module (SHH-Ptc) uncouples from the equation for FGF. As noted

above in this limit we recover the classical Schnakenberg Turing

model and patterning can still be observed (Figure S12).

SHH. SHH plays an important role in lung branching

morphogenesis. In Shh null mice the lungs only form a

rudimentary sac due to failure of branching and growth after

formation of the primary lung buds [49]. Deletion of Shh later in

gestation (after E13.5) causes mild abrogation of peripheral branch-

ing morphogenesis [75]. Defects in branching morphogenesis and

vascularization seen in Shh null mutant (Shh(2/2)) mice can be

substantially corrected when SHH is ectopically expressed in the

respiratory epithelium [75]. Retinoic-acid enhances the expression

of SHH and reduces the expression of FGF10 both by about 60%
[76–78] and leads to a decrease in the amount of distal branching.

Similarly in the model we predict that strongly enhancing Shh

expression and/or strongly reducing FGF10 expression will lead

to a loss of pattern (Figure 3). The overexpression of SHH in

transgenic mice leads to an upregulation of Ptc while other genes

such as BMP4 were not affected [48]. When we reduce (or enhance)

SHH production (rS) in our simulations then the production of Ptc

in a growing lung is heavily delayed (or speeded up respectively)

Figure 5. FGF10 distribution on a growing lung tip domain. Depending on the growth speed the distribution of FGF10 is either consistent
with (a) a lateral branching mode (fast growth speed, vg~0:08), or (b) a bifurcating mode of branching (slow growth speed, vg~0:02). Parameters
values used to simulate FGF10 pattern formaton on a growing lung are as given in Table 1, except initial stalk length h0~0:2.
doi:10.1371/journal.pcbi.1002377.g005
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(Figure 6e) which may well explain why Ptch appears upregulated

when Shh is overexpressed. Mutants with enhanced diffusion of

SHH have not been described in detail but, unlike for the limb, no

abnormalities have been reported in lung development [79]. An

increase of the SHH diffusional coefficient in the model results in a

gradual increase in the distance between branching modes

(Figure 6c,d). However, no such effect is visible up to a 50% increase.

Ptc-1. While a mouse with lung specific over-expression of Ptc

has not been created, other experiments show that increased

expression of Ptc results in a reduction of SHH signaling,

consequentially down-regulating expression of SHH responsive

genes such as gli1 and Ptc itself [72]. The model reproduces this at

first sight counterintuitive result and indeed predicts that the

maximum concentration level of SHH as well as the rate of Ptc

production decrease when the maximal Ptc expression rates (rP

and n) are increased (Figure 6 f and g). Enhanced expression of

Ptch1 expression in explants that are treated with FGF9 correlates

with less epithelial buds (branches) [80]. We indeed observe less

spots in our simulations when Ptch1 expression (rP) is increased

(data not shown).

Discussion

We have developed a model of the core signaling interactions

that governs lung branching morphogenesis (Figure 1a). We find

that the experimentally described interactions give rise to a

Schnakenberg-type Turing patterning mechanism which leads to

the self-organized emergence of FGF10 pattern from homogenous

initial conditions during in silico lung bud development. The

predicted pattern are overall consistent with experimentally

Figure 6. Mutant phenotypes. The FGF10 steady state concentration pattern in (a) wild-type (parameters as in Table 1), or (b) when the FGF
expression rate was reduced to 75%, or the relative SHH diffusion constant increased by (c) 2-fold (DS~10) or (d) 6-fold (DS~30). Note the different
spacings between FGF10 regions in the mutants. (e) The emergence of Ptc is delayed as the rate of SHH expression is reduced, i.e. rS = 200 a, 300 b,
400 c, 500 d, 700 e, 900 f, 1300 g, 1700 h. (f) The effective rate of Ptc production decreases as the maximal rate of Ptc expression (rP and n) increases;
this counterintuitive result is in agreement with experimental data. (g) The maximum SHH concentration decreases as the Ptc production rates rP

and n are increased. All parameter values are as in Table 1 unless otherwise stated.
doi:10.1371/journal.pcbi.1002377.g006
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observed expression pattern both in wildtype and mutants, and the

model predicts the reported increased spacing between FGF10

pattern in mutants with reduced FGF10 expression. The latter is a

non-trivial prediction that cannot be explained with models

reported earlier [36,42–44].

The parameter values are largely unknown for the developing

lung, but many of the parameters have been established in other

model systems (Table 2). To reduce the number of unknown

parameters we non-dimensionalized the model and our conclu-

sions thus only hinge on relative parameter values. In particular,

we require that SHH and FGF10 diffuse about a 100-times faster

than the receptor Ptc. Receptors are membrane proteins and are

known to diffuse some 100–1000-fold more slowly than proteins in

solution [55,56]. The diffusion of SHH and FGF10 in the fluid-

filled cavities, Dext, is again some 10-fold higher as is common for

unhindered diffusion of proteins [81]. Since the domain size and

the time span of the developmental processes are well known also

the absolute values of the parameters can be estimated from their

non-dimensional counterparts (Table 2), and we note that all

parameter values are within physiological ranges established in

other model organisms, i.e. [52,53,81]. Finally we note that

introducing the simplifying quasi-steadystate assumption for the

formation of the SHH-Ptc complex does not affect the observed

pattern as long as the non-dimensional binding and unbinding

constants are of order 1 which is in the likely physiological range.

The model shows that the different branching modes could

result from different patterns of FGF10. Thus for certain

parameter ranges FGF10 accumulates at the tip of the lung bud.

Since FGF10 induces outgrowth towards the highest FGF10

concentration this should lead to an elongation of the lung bud. As

the lung bud is elongating at the tip new FGF10 spots emerge at

the stalk of the lung bud close to the tip. These spots would lead to

the lateral outgrowth of the lung bud and thus to lateral

branching. For other parameter ranges FGF10 is absent from

the lung tip and concentrates towards the sides. The lung bud

would thus no longer elongate but grow out towards the sides

which could be interpreted as the bifurcation branching mode.

Since we only consider a 2D slice of the lung bud the model

cannot differentiate between planar and orthogonal bifurcations.

Interestingly, most parameter values can alter the FGF10

distribution and thus the mode of branching (Figure 3). An

increase in the diffusion constants or a lowering in domain size

favour bifurcations while enhanced protein production or reduced

decay tend to favour lateral branching. This may explain why

genetically different individuals tend to have different branching

patterns. At the same time this offers regulatory control to the

many signaling factors that can affect these rates, but which we

chose to ignore in this simple model that focuses on the core

signaling proteins. Thus BMP signaling may lower the rate of

FGF10 expression or interfere with the FGF-dependent increase in

SHH expression. Both effects would favour bifurcations over

lateral branching. BMP-dependent induction of Gremlin and

Noggin on the other hand would lead to the sequestration of BMPs

and thus limit the impact of BMPs. A strong increase or decrease

in BMP activity may then move the SHH and FGF10 expression

rates outside the patterning range. This may explain the

detrimental impact of both Bmp overexpression and conditional

knock-out on lung branching morphogenesis [32,33]. Further

computational modelling combined with experimentation will be

required to clarify this. The effective diffusion constants may be

affected by the expression of glycoproteins as previously reported

for the morphogen Dpp [82].

Growth has previously been reported to strongly affect pattern

selection in Turing models [83]. Indeed the rate of growth also

alters the branching pattern in our simulations (Figure 5). Thus we

observe FGF10 pattern characteristic of lateral branching at high

growth speeds and FGF10 pattern characteristic of bifurcations at

low growth speeds. The growth rate vg used to model the lateral

branching mode in our model is around 14 mm h{1 and gives rise

to two new branches per day with branches separated by

approximately 150–200 mm; this is well in agreement with

experimental observations [17,24]. To simulate the bifurcation

mode of branching we use a growth rate of 3.6 mm h{1 which is

close to the growth speed estimated from data in Metzger and co-

workers [17].

We can speculate that the concentration of FGF10 affects the

speed of outgrowth such that changes in the concentration during

outgrowth would determine the sequence of the branching events.

For our particular choice of parameters we observe lower FGF10

concentrations in spots close to the tips of rapidly growing lung

buds (Figure 7) which may lead to bifurcations in the next

generation. More proximal lateral spots have higher FGF10

concentrations, and these branches may grow out to longer length

as indeed observed for some of the proximal branches. We further

note that the position at which new branches appear depends on

the growth mode. Thus if growth is at least 2–3 times faster at the

Table 2. Dimensional parameters.

parameter value experimental range

r0,mm 50 &50 [32,59]

r1,mm 100 &100 [32,59]

lep,mm 10 &10 [32,59]

vg,mm h{1 14 (3.6)1 &14(4) [17,24]

DS,mm2s{1 12.5 0.1–50 [52,53]

DF,mm2s{1 2.5 0.1–50 [52,53]

DP,mm2s{1 0.05 0.001–0.5 [54–56]

Dext,mm2s{1 100 10–200 [81]

dF,s{1 5|10{3 10{4{10{3 [52,53]

dS,s{1 0:2|10{3 10{4{10{3 [52,53]

dP,s{1 1|10{3 10{4{10{3 [52,53]

dC,s{1 1:6|10{3|C1 -

v,s{1 5|10{3|C1 -

rF,mol mm{3 s{1 3:5|10{3|C2 -

rS,mol mm{3 s{1 1:6|C3 -

rP,mol mm{3 s{1 6|10{4|C3 -

½F�, mol mm{3 0:3|C2 typical concentrations

½S�, mol mm{3 0:5|C3 in the simulations

½P�, mol mm{3 10|C3 in the region of
expression

1value without/with brackets corresponds to lateral branching/bifurcation
modes of branching, respectively.

Note that the pattern-forming mechanism is highly robust to the exact protein
concentrations as long as the relative ratios are preserved. The concentration-
dependent parameters can take any value (as long as the relative ratios are

preserved) depending on the parameters C1~K
{2=3

F |C
{1=3½mol mm{3�,

C2~KS½mol mm{3�, C3~K
1=3

F |C
{1=3½mol mm{3� where C~

kon

koffzdC

. With

r2
0

DF

~1000 seconds and r0~50mm the simulation time and length scales

correspond to those observed experimentally [17,24], and we obtain this set of
dimensional parameters.
doi:10.1371/journal.pcbi.1002377.t002
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tip then new FGF10 spots emerge directly behind the tip. In case

of more uniform growth FGF10 spots appear also in the more

proximal domain. Both growth modes and patterning dynamics

have been observed during lung branching morphogenesis, and we

therefore suggest that both growth modes exist in the developing

lung and lead to the different patterning sequences.

Further advancements in our understanding of lung branching

morphogenesis will require the development of three-dimensional

models where the local growth rate is coupled to the FGF10

concentration and the inclusion of more signaling factors, most

importantly those of BMPs. The parameterization and validation

of such models will require new experimental data that reveal the

dynamics of the three dimensional dynamics of branching and that

quantify the epithelial and mesenchymal responses as well as the

growth speed relative to the FGF10 concentration. Such

information can now be acquired with the help of optical

projection tomographs [84], and this method has been already

used to capture the three dimensional dynamics of developing

kidney [85]. Further advances in experimental techniques can thus

be expected to provide exciting new insights into the regulatory

processes of branching morphogenesis during organ development.

Supporting Information

Figure S1 FGF distribution at the steady state calculat-
ed according to the model presented by Hirashima et al
[44]. SHH concentration is fixed at the lung tip and FGF

production is promoted by SHH. The computational domain is

equal to that shown on sub-figures a) and b). a) Elongation mode is

observed when lung tip is far from the impermeable domain

boundary, b) planar bifurcation is observed when the lung tip is in

the proximity of the impermeable domain boundary. c) FGF

expression pattern calculated on the infinitely big domain, in this

case FGF distribution is always corresponds to elongation mode.

Note, that panel c) is scaled differently compared to a) and b); stalk

and tip radius are the same in all panels.

(TIF)

Figure S2 Turing pattern on the continuos domain and
on the array of cells. The steady state distribution of the fast

diffusion component a), c) and slowly diffusion component b), d) in

a Schnakenberg model. Upper and lower rows show the solution

of the Schnakenberg model on 2D plane and on an array of

spheres, correspondingly.

(TIF)

Figure S3 The steady state distributions of the concen-
trations of FGF10, SHH and the receptor Ptc on a
domain that is divided into cells. a) If the diffusion coefficient

of Ptc at the cell edge is significantly lower than on the cell’’ surface

(DP = 0.001) then the observed patterns are the same as in a

continues model (compare to Figure 2a). b, c) The diffusion

coefficient of Ptc is set to zero at the cell’’ edge (black lines on the

domain), panels b) and c) show pattern of the domain split into

deformed rectangular and rectangular ‘‘cells’’, correspondingly. In

this case the observed patterns are distorted from those observed in

the case of the continuous model (Figure 2); however, all main

features are preserved, in particular at the mesenchyme/

epithelium border (right column). Unless stated otherwise the

parameter values in Table 1 were used.

(TIF)

Figure S4 The steady state distribution of FGF10. a)
n = 1, b) n = 3 parameters of other values are similar to
that presented in Table 1.

(TIF)

Figure S5 The steady state distribution of FGF10 calcu-
lated assuming various SHH-Ptc complex stoichiometry
a) SP3, b) S2P2, c) SP1:2. The values of the other parameters are

similar to the ones in Table 1, except for case c) where Dp = 0.004.

(TIF)

Figure S6 The impact of mesh resolution. FGF distribu-

tion at t~90 calculated on a mesh with a maximum element size

of a) 0.4, b) 0.2, c) 0.1 and d) 0.05.

(TIF)

Figure 7. The FGF10 concentration profile along the growing lung bud. a) The FGF10 distribution in a rapidly growing lung bud (vg~0:08)
at t~120. The letters denote the different FGF10 concentration peaks; the profile is shown in panel b. b) The FGF10 concentration profile along the
line shown in panel a. The labels in both panels denote the different branching points along the y-axis; peak f refers to the FGF10 concentration (F) in
the lung tip. The FGF10 concentration is highest at the lung tip (f) and is lowest at the newly formed branched point behind the tip (e). The
parameters used are as indicated in Table 1.
doi:10.1371/journal.pcbi.1002377.g007
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Figure S7 SHH, FGF and receptor Ptc expression
patterns at the steady state. Expression patterns of (a,d)

FGF10, (b,e) SHH, and (c,f) Ptc in the steady state for parameter

values as in Table 1 (a–c) or with rS~1300 (d–f). The upper

panel presents an example of FGF10 distribution during the lateral

branching mode, while the lower panel provides an example for

FGF10 distribution during a bifurcation branching mode.

(TIF)

Figure S8 FGF pattern in 3D. The steady state distribution of

FGF10 in 3D. Upper and lower panel show lateral branching and

bifurcation modes of branching, correspondingly. Parameter

values are as similar to those indicated in Table 1.

(TIF)

Figure S9 The impact of growth mode on a pattern. The

FGF distribution on a growing lung: uniform growth a), local

growth at the tip b).Parameters values used to simulate domain

growth in the local growth mode are equal to that given in Table 1,

except initial stalk length h0~0:2 and in the case of domain

stretching dS~0:2, dP~1, dC~1:7, v~5:1, rF~3, h0~0:2 and

the rest of parameters are as given in Table 1.

(TIF)

Figure S10 The robustness of FGF pattern to parameter
variability. FGF pattern calculated on a growing domain with

parameter distributed normally with standard deviation equal to

0.1 a), 0.2 b) and 0.3 c) of the corresponding value given in Table 1.

(TIF)

Figure S11 Dependence of FGF pattern in the wild type
and FGF mutant lung on the lung growth rate. The FGF

pattern were simulated for (top row) wildtype conditions (Table 1)

and (bottom row) mutants with 25% lower FGF expression

(rF = 2.6) on constant (SS) and growing domains (growth speed

vg). Pattern are compared on equally sized domains.

(TIF)

Figure S12 The steady state distributions of FGF10,
SHH and receptor Ptc concentrations in a mesenchyme
free lung in an a gel. Panels a) and b) show patterns at different

FGF10 concentrations.

(TIF)

Table S1 Relation between dimensionless and dimensional

parameters.

(EPS)
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