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Abstract
Microfluidics provides a powerful and versatile technology to accurately control spatial and temporal conditions 

for cell culturing and can therefore be used to study cellular responses to gradients. Here we use Lattice Boltzmann 
methods (LBM) to solve both the Navier-Stokes equation (NSE) for the fluid and the coupled convection-diffusion 
equation (CDE) for the compounds that form the diffusion-based gradient. The design of a microfluidic chamber for 
diffusion-based gradients must avoid flow through the cell chamber. This can be achieved by alternately opening the 
source and the sink channels. The fast toggling of microfluidic valves requires switching between different boundary 
conditions. We demonstrate that the LBM is a powerful method for handling complex geometries, high Péclet number 
conditions, discontinuities in the boundary conditions, and multiphysics coupling.

Introduction
The spatial organization of complex organisms requires cells to 

read out concentration differences and respond accordingly. Graded 
responses have been documented in different contexts, including 
developmental processes and immunological responses. To study 
these processes in greater detail it is important to study cells in a 
well-controlled setting where concentration gradients can be applied. 
Microfluidics provides a powerful and versatile technology to 
accurately control spatial and temporal conditions. A standard layout 
of a microfluidic set-up is shown in Figure 1. The chamber is connected 
to two channels that act as source and sink of the compound of interest. 
The compound is transported through these channels mainly by 
advection. Within the chamber, however, flow must be avoided as the 
resulting hydrodynamic stress would impact on the cells. Transport of 
the compound in the chamber must therefore be diffusion-dominated. 
The transition from advection- to diffusion-dominated regime at the 
right place is a challenging engineering problem. In the design phase, 

the use of adequate simulation techniques can provide insight into the 
governing mechanisms.

To describe the process, we need to simulate both the fluid dynamics 
and the distribution of the compound in the fluid. An incompressible 
Newtonian fluid is described by the Navier-Stokes equation (NSE):

( ) 2u u u p u f
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∂ρ µ
∂
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                (1)

where u  denotes the velocity field, ρ the fluid density, µ the dynamic 
viscosity, and f  an external body force, which is zero in our case. The 
passive advection and diffusion of a diluted compound is described by 
the advection-diffusion equation:

( ) RCDuC
t
C
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∂
∂                    (2)

with the diffusion coefficient D, and the local reaction term R.

Several numerical schemes have been used to simulate fluid 
flow, including the Lattice Boltzmann method (LBM) [1]. It has been 
shown that the Navier-Stokes equation is recovered in the nearly in-
compressible hydrodynamic limit. The LBM was also successfully 
applied to solve diffusion [2] and advection-diffusion equations [3]. 
Furthermore, the LBM has been shown to be capable to simulate 
reaction-diffusion problems by applying it to Turing type mechanisms 
[4–6]. The coupling of a passively advected and diffusing scalar to a 
fluid was shown in [7,8].

The Lattice Boltzmann method has previously been used to simulate 
a non-flow-free microfluidic gradient generator [9], whose design was 
inspired by Dertinger et al. [10]. However, the Péclet number in these 

Figure 1: Simulation Setup. (a) The channel and chamber geometry (all 
numbers given in [µm]). The cell chamber of interest, in-between the two 
channels, has dimensions 100[µm] by 250[µm]. The dead end valves are 
always closed. (b) In reality the distance from the valves to the chamber 
would be longer, but the channels are pruned in the simulation setup in 
order to save simulation time. This has no impact on the solution since the 
diffusion length is smaller than the length of the pruned channels. (c) The left 
and right channel are opened alternately for 1[s], respectively. Between the 
flushings, all valves are closed for 119[s].
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simulations is about fivefold lower than in the experimental data that is 
used to validate the simulations and well within the numerically non-
critical regime of the standard Lattice Boltzmann methods. Moreover, 
since the microfluidic gradient generator is not flow-free it would not 
be suitable for experiments with cells that are sensitive to flow.

Recently, a microfluidic setup was published that prevents flow 
through the cell chamber by using alternate flushing of the channels 
[11]. We use LBM-based simulations to computationally explore a 
similar design. Because of its algorithmic locality, complex geometries 
and boundary conditions (such as the fast switching of boundary 
conditions to imitate the valve dynamics), can easily be integrated into 
the LBM. In the following we will describe the LBM-based simulations 
of gradient formation in a microfluidic chamber.

Methods
Experimental layout and conditions

The implemented layout of the microfluidic chip is shown in Figure 
1a. It consists of two parallel channels of width 100[µm] and length 
1000[µm], whose inlet and outlet are controlled by microfluidic valves. 
The two channels are connected by the diffusion chamber, consisting 
of a pre-chamber region, and the actual cell chamber of size 1000[µm] 
by 250[µm]. A fence consisting of five cylindrical elements disturbs 
the flow and thus reduces its advective influence in the chamber. 
Additional dead-end channels, which are used for cell handling, 
are explicitly modeled since they act as reservoirs. The height of the 
chamber is between 40[µm] and 100[µm], such that the processes are 
well approximated by a two dimensional simulation.

The distance from the valves to the chambers may be larger in 
reality (Figure 1b); however, they can be pruned such that they are 
in the range of the effective diffusion length 2 DT , defined by the 
diffusion coefficient D and the time period T between two consecutive 
flushings.

Every two minutes, the left channel opens both its inlet and outlet 
valve for one second. As shown in Figure 1c, the sequence for the right 
channel is shifted by one minute, such that the chip is completely closed 
for 59 seconds. The technique to avoid flow through the cell chamber 
using alternate flushing of the channels has been described in [11].

In the beginning, the left channel is flushed with medium with 
a compound of interest, and the right channel with plain medium. 
Therefore a concentration gradient emerges across the chamber. After 
two hours, the fluids are interchanged for another two hours, enforcing 
an inversion of the gradient.

Upon opening the valve, the flow is virtually immediately 
fully developed due to the very low Reynolds number and the 
incompressibility. The high maximal flow speed in the channel Uphys= 
5000[µm/s] and the low diffusion coefficient of the compound Dphys= 
122[µm/s] result in an advection-dominated transport in the channels. 
Using a characteristic length scale L = 100[µm/s]  (the channel width), 
the Péclet number Pe = UL/D≈4100  can be computed. While entering 
the diffusion chamber (of after closing all valves), the advective 
transport reduces to zero and the diffusive transport dominates.

A summary of the used physical parameter values can be found in 
Tables 1 and 2.

Numerical methods

For the fluid, we employed the standard D2Q9 solver proposed 
in Chen and Doolen [1]. The D2Q9 lattice is defined by the lattice 
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The lattice Bhatnagar-Gross-Krook (BGK) equation, the 
equilibrium distribution function eq

if  in the ith direction, and the 
corresponding weights wi are taken as:
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where Δt denotes the time step,  Δx the spatial discretization and c= Δx/
Δt  the lattice speed. The simplest choice to guarantee consistency with 
the lattice (Eq. (3)) is  Δt=Δt  =c=1. The relaxation time τ is related to 
the kinematic viscosity ( )2 1/ 2s fcν τ= − . For isothermal flow, the speed 

of sound is defined as  1/ 3sc = .

Equation (4) implies a two step algorithm: first, local collision 
relaxes the populations towards the local equilibrium (right hand side), 
and second, the populations perform a free flight to the next lattice 
point (left hand side). The density, momentum density and pressure are 
computed as:

2
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For solving the advection-diffusion equation of a compound C 
(Equation (2)), a multi-distribution function (MDF) approach was 
used. It was first used in Bartoloni et al. [12] to model the temperature 
field of a thermal flow (Boussinesq approximation) as a passively 
advected scalar field, and further improved in Guo et al. [8]. In contrary 
to the fluid solver, [8] use a D2Q4 lattice and stencil. The lattice BGK 
equation, the equilibrium distribution and the zeroth order moment read:
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Physical units LB units

Channel width  [ ]mLphys µ100=  [ ]20LB
xL δ=

Simulation time  [ ]sT phys 125.0=  [ ]510LB
tT δ=

Maximal velocity  [ ]35 10 /physU m sµ= ×   20.05 /LB
x tν δ δ =  

Kinematic viscosity  6 210 /phys m sν µ =     20.05 /LB
x tν δ δ =  

Table 1: Parameter values for the fluid solver, both in physical and LB units.

Physical units LB units

Channel width  [ ]mLphys µ100=  [ ]20LB
xL δ=

Simulation time  [ ] [ ]4 14400physT h s= =  [ ]28800000LB
tT δ=

Maximal velocity  [ ]35 10 /physU m sµ= ×   [ ]0.5 /LB
x tU δ δ=  

Diffusion coefficient  
2122 /physD m sµ =     

20.00244 /LB
x tD δ δ =    

Decay rate  [ ]0.00066851 1/physk s=  [ ]73.34255 10 1/LB
tk δ−= ×

Table 2: Parameter values for the CDE solver, both in physical and LB units.
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where gi denote the particle distribution functions. The velocity field u  
is transferred from the fluid solver (Equation (7)). The relaxation time  
time τg is related to the diffusion coefficient as D = (2τg -1)/4.

Note that all variables are measured in tthe LB units δt and δx. The 
conversion to  physical quantities is described below.

Boundary conditions

For the wall boundary condition of the fluid, the missing incoming 
populations are approximated by equilibrium distributions. The 
momentum needed to compute the equilibrium is spatially first order 
interpolated between the fluid in direction of the missing population, 
and the known zero momentum at the wall. The density is spatially first 
order extrapolated from the fluid.

The pressure boundary condition for the fluid is realized by applying 
do-nothing, corresponding to zeroth order extrapolation in time. Then 
all populations are rescaled such that the desired pressure is obtained. 
The velocity field is not affected, since the rescaling factor γ cancels

( ) ( )
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,
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i ii
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γ
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                   (10)

This technique was used in Zhang and Kwok [13], although for 
specifying the pressure difference in periodically closed channels.

The same approach is used for the Dirichlet boundary condition 
of the diffusing compound at the channel inlet. Since the prescribed-
density boundary condition cannot be applied to the outlet, the well- 
known do-nothing boundary condition is applied [14]. For the no-flux 
boundary condition, the boundary condition presented in Guo et al. 
[8,15] is used.

Choice of parameter values and conversion

For both the fluid and the advection-diffusion simulations, the 
flow channels are resolved by 20 lattice points. The lattice spacing thus 
derives as δx =[100[µm]/20=5[µm].

For the fluid simulation, the dimensionless Reynolds-number can 
be used to determine the missing LB parameters:

Re 0.5
phys phys LB LB

phys LB

L U L U
ν ν

= = =                   (11)

With the choice of a numerically reasonable LB kinematic viscosity 
vLB = 0.05, the maximal fluid speed ULB can be computed (Table 1). The 
LB time unit can be computed by equating the physical and LB maximal 
fluid speed, which results in δt = 1.25 ×10-6[s]. The pressure difference is 
chosen such that ULB  is achieved with less than 1% error.

The procedure for the advection-diffusion simulation is similar. In 
order to allow for large time steps, the maximal fluid speed is chosen 
as ULB = 0.5, which is close to the speed of sound 1/ 3sc = . Again, 
the LB time unit δt = 1.25 ×10-4[s] is determined by comparing the 
maximal fluid speeds. To use the fluid field from the fluid simulation 
in the advection-diffusion simulation, the field was scaled according to 
the change in the LB time unit. By equating the dimensionless Péclet 
number

34.1 10 [1]
phys phys LB LB

phys LB

L U L UPe
D D

= = ≈ ×                 (12)

the the diffusion coefficient DLB can be computed  (Table 2).

Results
The diffusing compound is passively advected by the fluid, but does 

not feedback on the fluid dynamics. The fluid dynamics can therefore 

be solved independently. After having computed the velocity fields, 
they can be used as an input to solve the advection-diffusion equation 
of the compound. The results of these steps are analyzed and discussed 
in the following.

In a first step, only the fluid dynamics is solved and analyzed. The 
geometry as shown in Figure 1a was implemented using the well-
known D2Q9 BGK LB scheme. Upon opening the valves, a pressure 
boundary condition with prescribed pressure was applied. The fluid in 
the domain, initially at rest, is brought to a steady state flow field in 
a short time span in a weakly compressible manner. The streamlines 
for opened left and right channel are shown in Figure 2a and 2b, 
respectively. Although the majority of streamlines follows a straight 
line, particles close to the boundaries flow around the fence and into 
the chamber. It can be observed that the direction of flow is locally 
reversed. However, the magnitude of the velocity is negligible in the 
chamber itself (Figure 2c and 2d), which is an important requirement 
for culturing cells. In the channel, the flow approximates a Poiseuille 
flow velocity profile, and corruptions as a consequence of the inlet and 
outlet boundary conditions are negligible. The fluid pressure, shown in 
Figure 2e and 2f, drops, according to the Poiseuille solution, linearly 
in the channels. Close to the chamber, the effective flow cross-section 
is increased, leading to a lower pressure gradient. The pressure field in 
the cell chamber is homogeneous. The chosen parameter values for the 
fluid dynamics simulation are given in Table 1.

Since the flow virtually immediately reaches state (after about 
0.025[s]), and because the time step for the fluid solver has to be chosen 
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Figure 2: The flow field. (a-b) Streamlines when the left (a) or right (b) 
channel are open, respectively. (c-d) The magnitude of velocity. In the 
channel, a Poiseuille-flow-like velocity profile is developed. The units of the 
color code is [µm/s]. (e-f) The pressure field drops linearly in the channels, 
and flattens in the chamber-transition-zone, where the effective flow-cross-
section is increased. The color code is given in LB units.
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considerably smaller (about tenfold) than the desired time step for 
the advection-diffusion solver, the velocity fields are pre-computed 
(as described in the a foregoing section), stored and then loaded into 
the advection-diffusion solver. The velocity fields of three different 
conditions are needed: left channel open and right channel closed, left 
channel closed and right channel open, and all channels closed. This 
approach prevents the advection-diffusion solver from solving the same 
fluid flow repeatedly.

In a second step, the advection-diffusion solver, which is largely 
consistent with the fluid solver, is implemented to solve (Equation (2)). 
Other than in the fluid solver, the velocity to compute the equilibrium 
distributions (Equation (9)) is taken from the pre-computed fluid 
velocity field. The zeroth order moment (density) can be interpreted as 
the compound concentration. In order to allow for maximal temporal 
step size, the fluid velocity has to be chosen as high as possible. We 
chose ULB = 0.5 in order to comply with the limit defined by the speed of 
sound cs. It has been shown that, for advection-diffusion applications, 
the advection velocity can be chosen comparably high [16,17], although 
the error grows. However, the choice of a new ULB = 0.5 (and thus a new 
time step δt) requires the rescaling of the pre-computed velocity fields.

In order to simulate the opening and closing of the valves, the 
inlet and outlet boundary conditions are changed periodically for 
the advection-diffusion solver. For closed valves, an ordinary wall 
(no-flux) boundary condition is applied. An open inlet is realized by 
a prescribed-density boundary condition, which corresponds to the 
pressure boundary condition in the fluid solver. The inlet density is set 
to 1 or 0, depending on whether the channel is fed with the concentrated 
or the plain medium.

When opening the channel carrying the concentrated medium for 
the first time, the advected concentration profile has a step-like shape. 
The advection of discontinuities (or extremely sharp gradients) is 

numerically challenging. To test the capability of the advection-
diffusion solver to advect a step profile with very low diffusion, the 
initial opening of the left channel is considered. At time t = 0, the 
channel is at rest, and the compound concentration is zero. Upon 
opening the channel, the fluid velocity immediately accelerates to the 
stationary (pre-computed) velocity field. The compound concentration, 
being 1 at the inlet boundary, is carried with the flow into the channel. 
This situation is similar to the advection of a step profile, with two 
differences: firstly, the velocity is not constant perpendicular to the 
direction of flow; and, secondly, we have diffusive transport. However, 
the Péclet number Pe ≈ 4100 is very high, meaning that the advective 
transport dominates the diffusive transport, and the smoothing of the 
initially step-like concentration profile is minor. Figure 3a shows the 
concentration profile along the channel. Severe numerical instabilities 
are induced close to the high gradient region, which do not decay with 
the front being advected. A tenfold decrease of the time step δt does 
not affect the instabilities (Figure 3a). Decreasing, instead, the Péclet 
number to Pe ≈ 800  by decreasing the flow speed to Uphys = 100[µm/s] 
(and thus ULB = 0.1[δx/δt]) leads to significant smoothing of the initially 
present numerical instabilities, as shown in Figure 3c. Again, decreasing 
the time step tenfold does not lead to an improvement of the solution 
(Figure 3d). However, since the numerical instabilities only form at the 
very first opening on a massive scale, and only on a minor scale at later 
openings, they are acceptable when considering the long time solution. 
The chosen parameters for the step advection test are summarized in 
Table 3.

As last step, the full microfluidic setup is simulated. The left 
channel is fed with concentrated medium for two hours, leading to a 
gradient from the left to the right. For another two hours, the gradient 
is reversed by changing the medium of the channels. In order to test 
the effect of decay of the compound, the simulations are once carried 
out with, and once without degradation. In the latter case, the gradient 
reaches almost its steady-state after 60 [min] (shown in Figure 4a). 
According to the theory, a non-linear steady-state concentration profile 
is obtained. Thirty minutes after reversing the media, the gradient 
already reaches its mirrored steady-state profile. However, the dead-
end channels act as reservoirs, revealing the importance of their 
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Figure 3: Propagation of a step profile. The concentration profiles along 
the midline of the left channel is shown, shortly after opening the valve the 
first time. The top row shows simulations for a Péclet number Pe ≈ 4100, 
and the bottom row for Pe ≈ 800 after decreasing the fluid speed to Uphys 
= 1000[µm/s]. In the second column, the temporal resolution is tenfold 
increased as compared to the first columns. The chosen parameters are 
summarized in Table 3a For low temporal resolution and high Pe number, 
high numerical instabilities are triggered, which do not decrease as time 
passes. (b) Increased temporal resolution does not mitigate the instabilities. 
(c) At a five-fold lower Pe number, numerical instabilities can be initially found 
close to the high gradient, but they diminish as the step profile propagates 
and smoothens. (d) Higher temporal resolution does not lead to significantly 
different results.
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Figure 4: Evolution of Concentration. (a) The concentration profiles at 
different time points along the midline of the chamber. The compound 
is decaying, leading to a non-linear steady-state profile. (b) For a stable 
compound, a linear concentration profile is obtained in the chamber. (c) Time 
evolution of the concentration at three different locations in the chamber 
(Figure 1). The steady state is reached quickly for a decaying compound, as 
opposed to a stable compound (d).
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(a) (b) (c) (d)
Uphys 500[µm/s] 500[µm/s] 1000[µm/s] 1000[µm/s]

Dphys  [ ]sm /122 2µ  [ ]sm /122 2µ  [ ]sm /122 2µ  [ ]sm /122 2µ
Tphys 0.2[s] 0.2[s] 1[s] 1[s]
 δx 5[µm] 5[µm] 5[µm] 5[µm]
δt 0.0005[s] 0.00005[s] 0.0005[s] 0.00005[s]

ULB 0.5[δx/ δt] 0.05[δx/ δt] 0.1[δx/ δt] 0.01[δx/ δt]

DLB [ ]tx δδ /00244.0 2 [ ]tx δδ /000244.0 2 [ ]tx δδ /00244.0 2 [ ]tx δδ /000244.0 2

Table 3: Parameter values for the step profile advection test.

inclusion into the simulation. When setting the compound degradation 
to zero, it takes approximately two hours to reach the linear steady-
state concentration profile (shown in Figure 4b). The reversion is much 
faster and the steady-state is already reached after one hour. This can be 
explained by the fact that a particle only has to diffuse through half the 
chamber, whereas it had to diffuse through the entire chamber to form 
the initial gradient. To analyze the dynamics of gradient formation, the 
time evolution of the concentration at fixed points (shown in Figure 
1 as blue, green and red points) is shown in Figure 4c for a decaying 
compound, and in Figure 4d for a non-decaying compound. Besides 
the time to reach steady-state, also the reached maximal concentrations 
in the cell chamber (from -500[μm] to + 500[μm]) are considerably 
lower in the case when the compound decays.

Discussion
In order to gain insight into the governing processes in a microfluidic 

gradient generator, and to support its design and development, 
computer simulations based on Lattice Boltzmann methods were 
developed. We have shown that the LBM is capable to simulate both the 
fluid flow and the coupled advective and diffusive processes. Although 
the high Péclet number regime (Pe > 4000) leads to severe numerical 
instabilities when advecting steep gradients, we report that, on the long 
time scale, the LBM leads to stable solutions. Using simulation it was 
shown that the presented microfluidic chip design is capable of forming 
and maintaining spatially and temporally controlled, diffusion based 
gradients. The valve-switching strategy and the flow-disturbing fence 
reliably prevent the flow from entering the cell culture chamber.

The benefit of the availability of such a gradient generator is 
manifold. Firstly, the concentration levels at points of interest can 
be accurately predicted and controlled. With the steadily increasing 
demand for quantitative data, microfluidic gradient generators offer 
the possibility to efficiently conduct multiple experiments on one 
chip. Secondly, the compound sources and sinks are spatially close to 
the experimental chamber and frequently renewed. This allows to use 
biochemical compounds with very high (self-) degradation, since the 
diffusive transport only has to cover comparably small distances.
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