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Abstract

The behavior of most dynamical models not only depends on the wiring but also on the kind and strength
of interactions which are reflected in the parameter values of the model. The predictive value of mathemati-
cal models therefore critically hinges on the quality of the parameter estimates. Constraining a dynamical
model by an appropriate parameterization follows a 3-step process. In an initial step, it is important to
evaluate the sensitivity of the parameters of the model with respect to the model output of interest. This
analysis points at the identifiability of model parameters and can guide the design of experiments. In the
second step, the actual fitting needs to be carried out. This step requires special care as, on the one hand,
noisy as well as partial observations can corrupt the identification of system parameters. On the other hand,
the solution of the dynamical system usually depends in a highly nonlinear fashion on its parameters and, as
a consequence, parameter estimation procedures get easily trapped in local optima. Therefore any useful
parameter estimation procedure has to be robust and efficient with respect to both challenges. In the final
step, it is important to access the validity of the optimized model. A number of reviews have been published
on the subject. A good, nontechnical overview is provided by Jaqaman and Danuser (Nat RevMol Cell Biol
7(11):813–819, 2006) and a classical introduction, focussing on the algorithmic side, is given in Press
(Numerical recipes: The art of scientific computing, Cambridge University Press, 3rd edn., 2007, Chapters
10 and 15). We will focus on the practical issues related to parameter estimation and use a model of the
TGFb-signaling pathway as an educative example. Corresponding parameter estimation software and
models based on MATLAB code can be downloaded from the authors’s web page (http://www.bsse.
ethz.ch/cobi).
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1. Pre-regression
Diagnostics

Typically, modeling efforts are started after some experimental data
has already been obtained, and based on these data a model is
developed and parameterized. Initially, some (or most) parameter
values will be unknown or can only be constrained to a biologically
relevant range.Due to this incomplete information, a pre-regression
analysis of the model is important to evaluate which and how
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model parameters can be estimated from future data. To estimate a
parameter, changes in this parameter value need to affect the pre-
diction of the model with regard to a state value for which there is
data. In other words: the measured output must be sensitive to each
parameter that we seek to estimate. Therefore, pre-regression
analysis of the model is centered around sensitivity analysis, answer-
ing the question: “How does a system output depend of a certain
parameter value?”.

1.1. Sensitivity Analysis A sensitivity analysis evaluates the dependence of a system output
on a certain set of model parameters. Let m ¼ { m1, m2, . . ., mM}
be a set ofMmeasurable output and p ¼ { p1, p2, . . ., pP} the set of
P unknown model parameters. The matrix of sensitivity coefficients
Sp

m (see Chapter 1) of the output with respect to the parameters is
defined for each entry as

Smi
pj

¼ @mi

@pj
; i ¼ 1; . . . ;M j ¼ 1; . . . ;P : (1)

To optimally identify a model parameter, its corresponding
sensitivities should be large and distinct from the sensitivities of
all the other parameters. In other words, each column of the
sensitivity matrix as defined by Eq. 1 should have at least one
large entry and all columns must be linearly independent. If the
latter does not hold, certain parameter changes can compensate for
each other leaving the model output unchanged. As a result, param-
eter estimates will be correlated when inferred from the measure-
ments. Since the sensitivities are state and time dependent, the way
that the system is measured has a strong impact on the calculated
sensitivities. Accordingly, sensitivity analysis can be used to plan
new informative experiments with the aim to maximize the iden-
tifiability of the model parameters (2). Note that this type of
analysis is local, i.e., applies only for a specific set of (a priori
defined) parameter values. For a generally valid conclusion, the
analysis may have to be carried out over a large set of biologically
plausible parameter values.

2. Parameter
Estimation

We now turn to the problem of parameter estimation. We highlight
the major steps in the optimization of parameters with a special
emphasis on gradient-based optimization methods.

2.1. The Model Our dynamical system with N state variables can be described by a
set of ordinary differential equations. If we write x(t) for a vector
with all state variables, k for a vector with all parameters, and x0 for
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the vector for all initial expressions, this set of differential equations
can be expressed as

dxðtÞ
dt

¼ f ðxðtÞ; t ; kÞ; xðt0Þ ¼ x0: (2)

Often, the state variables cannot be directly observed, and there
are combinations of state variables, or relative quantities (or possi-
bly even more complicated functions of the state variables) that are
measured in experiments. We therefore specify an observation
function g : RN ! RM which maps the state variables x to a set of
M observables,

yðtÞ ¼ gðxðtÞ; sÞ (3)

We require both f (�) and g(�) to be continuously differentiable
functions with respect to their parameters. The vector s comprises
the parameters of the observation function. Note that our formu-
lation includes measurement settings where we can only partially
observe the system such that M < N. The set of problem-specific
parameters p includes the initial conditions, the model parameters,
and the parameters that are specific to the measurements, i.e.,
p ¼ {x0, k, s}. The initial values of the dynamical system are also
parameters as they are usually unknown.

2.2. Measurement Data We denote the measured data by yij. Generally, these measurements
yij are subject to error, i.e., they are the sum of the observables yj(ti)
and a measurement error, eij.

yij ¼ yj ðt iÞ þ Eij : (4)

In the following, measurement errors are assumed to be
independent across all observations and all time points and follow
independent Gaussian distributions with zero mean and state and
time-dependent variance sij

2. Due to the law of large numbers these
assumptions apply in many practical settings. However, other dis-
tributions, in particular log-normal distributions, are also encoun-
tered, for instance when protein concentrations are low. Therefore,
independence and normality should be checked in the course of data
pre-processing. Data should be transformed appropriately in case of
deviations from normality as discussed in (3). The observation
function g(�) can take account for this transformation.

2.3. Nonlinear

Regression

Intuitively, an optimal model should minimize the deviation
between model prediction and data and thus make the measure-
ments most likely given the model. In other words, an optimal
parameter set is obtained by maximizing the likelihood L of the
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data ywith respect to the parameter set p. The likelihood L takes the
following form given our assumptions above:

LðyjpÞ ¼
YT
i¼1

YM
j¼1

1

sij
ffiffiffiffiffiffi
2p

p exp �1

2

ðyij � gj ðxðt i; pÞ; pÞÞÞ2
s2ij

 !
: (5)

Due to the asymptotic properties of the maximum likelihood
principle, it occupies a central position in estimation theory. In the
limit of infinitely many data, it yields an unbiased, normally
distributed parameter estimate with a minimal variance (4). How-
ever, in many practical settings, these properties are not matched
due to limited amounts of data. Still, maximum likelihood is the
most commonly used estimation principle because it is rather easy
to implement. In practical terms, to find the maximum of the
likelihood function the negative log likelihood is minimized.

� log½LðyjpÞ� ¼
XT
i¼1

XM
j¼1

1

2
Rij ðpÞ2 þ cij ;

Rij ðpÞ ¼
yij � gj ðxðt i; pÞ; pÞÞ

sij
; cij ¼ log sij

ffiffiffiffiffiffi
2p

ph i
:

(6)

The term cij in Eq. 6 is independent of p, and can be left out of
the minimization. The maximum likelihood estimator for the
model parameters is thus given by

p� ¼ argmin
p

XT
i¼1

XM
j¼1

1

2
Rij ðpÞ2: (7)

Note thatEq. 7 is essentially a least squaresminimizationproblem (5).

2.4. Gradient

Calculation

Common methods to minimize Eq. 7 are gradient based such as
the classical Gauss–Newton or Levenberg–Marquardt methods (5).
Gradient-based methods follow an iterative procedure in order to
minimize Eq. 7 where in each step the gradient of the residuals
Rij(p) is used to calculate a parameter update.

@

@pl
Rij ðpÞ ¼ � 1

sij

@

@pl
gj ðxðt i; plÞ; plÞÞ

¼ � 1

sij

XN
n¼1

@gj

@xn

����
t i

dxn
dpl

����
t i

þ @gj

@pl

����
t i

 !
(8)

@gj
@xn

and
@gj
@pl

in Eq. 8 are the Jacobians of the differential equation

system with respect to the state variables and with respect to the
parameters. Snpl ¼ ðdxnÞ=ðdplÞ in Eq. 8 are the so-called sensitivities
of the state variables to changes in the parameter values that we
discussed in the previous chapter. In general there is no analytic
solution to the trajectories x(t, p) and therefore the sensitivities
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Snpl ¼ ðdxnÞ=ðdplÞ in Eq. 8 have to be calculated numerically.

Naively, one may approximate them by finite differences, which is
also the default in many optimization software packages. However,
this approximation is numerically unstable and becomes computa-
tionally very expensive in case of a high-dimensional parameter
space as it demands many integrations of the differential equations
(Eq. 2) (6). Alternatively, the sensitivities can be computed by an
integration of the sensitivity equations (as discussed in the previous
chapter) in parallel with Eq. 2.

dSnpl
dt

¼ d

dt

dxn
dpl

¼ d

dpl

dxn
dt

¼ df ðt ; xðtÞ; kÞ
dpl

¼
XN
q¼1

@f n

@xq

dxq
dpl

þ @f n

@pl

Snpl ð0Þ ¼
dxq
dpl

� �
ð0Þ ¼ 1 : p1 2 fx0g

0 : p1 2 fs ; kg
�

(9)

Note that @f =@x0 ¼ 0 and @g=@x0 ¼ 0. Since f (�) and g(�) are
specified beforehand, their derivatives with respect to parameters
and state variables can also be computed beforehand, either manu-
ally or for more complex systems by applying symbolic
computations. In case of using implicit ODE solvers, the Jacobian
∂f / ∂x should also be provided to the solver as it speeds up the
calculations considerably. In our experience, an efficient and reliable
computation of the sensitivities and gradients of the residuals is
absolutely crucial for the success of a gradient-based minimization
in high-dimensional parameter space. The parallel solution of the
sensitivity equation has also the advantage of getting the sensitivity
of certain system properties, defined by an appropriate observation
function, in parallel with the solution of Eq. 2.

2.5. Minimization

Process

A brief workflow of the gradient-based optimization procedure is
given in Table 1. The procedure starts with an initial set of parame-
ter values. In each cycle of the iteration, the ODE systems (Eqs. 2
and 9) are solved and the residuals and gradient of the residuals
(Eq. 8) are calculated. Based on the current parameter values and
the gradient, new parameter values that minimize the sum of
squared residuals (Eq. 7) are minimized. It is noteworthy that the
minimization step itself is only a minor contributor to the total
computation time. The main computational burden is created by
the need to solve the system of ODEs for the state variables and for
the sensitivities many times. There are three commonly used
procedures to update the parameters. We will only briefly mention
them and refers the more interested reader to the discussions
and algorithmic implementations presented in (5). In the
Gauss–Newton procedure, the update step is calculated by solving
by a linear regression in the unknown parameter increments. The
Levenberg–Marquardt procedure adds considerable robustness to
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Gauss–Newton by an adaptive regularization of the linear regression
problem to catch ill-conditioned cases, e.g., if some parameters
are nonidentifiable. The third commonly used update scheme
approximates the optimized function (Eq. 7) in a local region by a
simpler, possibly lower dimensional, function. This “trust region” is
chosen adaptively and the minimization is performed herein.
MATLAB’s lsqnonlin function, which was used in the example given
below, implements all three procedures with a trust region-based
method as the default. The iteration continues until a certain
stopping criterion is matched, e.g., if the change in residual norm
(or the relative parameter change) is smaller than a predefined value.
Finally, postregression statistics such as the goodness of fit (GOF),
parameter covariances and confidence limits are performed, as
described below.

The success and robustness of any optimization procedure is
intricately linked with the model dynamics and data complexity. For
some data settings, e.g., oscillatory time series data, parameter
estimating is particularly difficult due to many local minima in
Eq. 7. In this case, a multiple shooting approach can greatly

Table 1
General workflow of gradient-based minimization
procedures. In each parameter update step, the system
of ODEs and the sensitivity equations are integrated

Initialize model system and parameters

LOOP

Integrate ODE (Eq. 2.2) and sensitivity equations (Eq. 2.9) based on
current parameter vector

Calculate residuals defined in Eq. 2.7 and Jacobian of residuals based
on sensitivities and Eq. 2.8

Use gradient-based technique such as Trust-Region to calculate
parameter increment utilizing

Jacobian of residuals

IF convergence criteria fulfilled

BREAK

ELSE

Update parameter vector

ENDIF

ENDLOOP

Calculate fit statistics, parameter variances and confidence limits
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increase the convergence radius of the global minimum (6).
Since all optimizers have intrinsic parameters which influence the
success of the minimization we generally recommend to test differ-
ent optimization settings as well as different optimizers.

In Table 2, we compare the performance of different minimi-
zation algorithms from MATLAB (lsqnonlin) and the Systems Biol-
ogy Toolbox (www.sbtoolbox2.org). To this end, we used a
model of the TGFb signalling pathways which is described in
detail below. We simulated time series data from the model includ-
ing 14 observations with 20 data points each and fitted 16 model
parameters. The table shows a clear result: only the gradient-based
Trust-Region method of MATLAB’s lsqnonlin leads to accurate
parameter estimates and performs efficient and robust. However,
this excellent performance requires the specification of the gradi-
ent of the residuals (Eq. 8). If this information is not given, the
gradient is approximated by finite differences, which leads to a
considerable increase in computation time (ODE integrations)
and the number of convergent fits is reduced. We also tested the
Levenberg-Marquardt procedure of MATLAB’s lsqnonlin function,
which performed very poorly. As the implementation cannot han-
dle bounds on parameter values, the algorithm frequently ran into
negative values, especially for the unidentifiable parameters. As a
result, ODE integration failed and the optimization was canceled.
The Trust-Region methods can easily handle parameter con-
straints and the ODE integration never failed in all 30 trails. In
contrast to the previous methods, the simplex and simulated
annealing algorithms provided by the Systems Biology Toolbox
don’t use gradient information. Table 2 shows that both perform
poorly. The simplex method converged only in 4% (1 of 30 trials)
to the true minimum as measured by the GOF. Simulated anneal-
ing converged to the true minimum in 17% (5 out of 30 trials).
This is in stark contrast to the Trust-Region method which found
the true minimum in 100% of all convergent fits (which are 97%).
Interestingly, the number of identifiable parameters as measured
by the coefficient of variation is low in case of simulated annealing.
Nevertheless, the smaller number of identifiable parameters were
fitted with very good accuracy (see parameter norm, last column).
Note, that we used the standard settings provided for both meth-
ods and only changed those that control the total computation
time (e.g. the total number of function evaluations) in order to
allow sufficient time for each minimization. In summary, the
gradient based Trust-Region method greatly outperforms the
two other gradient free methods in computation time, robustness
and accuracy.
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Table 2
Performance of different optimization algorithms. All optimizers were run on the
same data set containing all but the TGFb receptor and the I-Smad mRNA states
(20 data points and 10% measurement error). In total, 16 parameters where fitted.
Results are averaged over 30 different parameter starting conditions and are given
as median and interquartile ranges (IQR). The IQR is a robust measure of spread
and indicates the width of the range containing 50% of the data. Column 1 states
the optimization algorithm. Simplex is a gradient free, local minimization method
while simulated annealing is a stochastic, global minimization method. All
methods were run with the default settings except for those that restrict the total
number of function evaluation. These were increased to 105 in order to allow for
sufficiently long minimization times. Column 2 indicates whether the Jacobian of
the residuals (Eq. 8) was used. Column 3: percentage of true convergent fits, as
evaluated by the GOF probability Pr[x264

2] � 0. 1. Column 4: average
computation time in minutes. All minimizations were run on an Intel Xeon(R) CPU,
2.83 GHz. Column 5: optimal x2 value (bold font) and GOF probability (regular font).
The x2 distribution has 264 degrees of freedom. Column 6: percent of identifiable
parameters. Parameters are called identifiable if their coefficient of variation is
smaller than 1. Column 7: norm of the relative parameter deviation defined as
║ ptrue�p�

ptrue
║2. The norm is given for all (bold font) and only for the identifiable

(regular font) parameter

Optimizer

Jacobian
(Eq. 8)
used

% True
convergent
fits

Computation
time [min]

Goodness of
fit: x2, Pr[x2]

%
Identifiable
parameter

Deviation of
parameter
estimates: all,
identifiable

MATLAB
lsqnonlin:
Trust-
region

Yes 97 2.3 (1.3) 214.55
(1.25), 0.99
(0)

75 (0) 1,513
(11,662),
0.42 (0.15)

No 73 39.5 (12.2) 187.84
(0.18), 0.99
(0)

75 (0) 1,124
(15,958),
0.27 (0.1)

SB toolbox:
simplex

No 3 7.8 (7.8) 3,705.16
(2,758.20),
0 (0)

50 (23) 551 (7,819),
0.95 (0.4)

SB toolbox:
annealing

No 16 23.9 (6.7) 1,677.12
(2,519.10),
0 (0)

38 (16) 62,521
(89,370),
0 (0)

Average values are given in the following format: median (IQR)
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3. Post-regression
Diagnostics

After parameter fitting the quality of the fit should be evaluated.
We start with an evaluation of the goodness-of fit followed by an
estimation of the confidence intervals for the estimated parameters.
These can be used to calculate confidence intervals for future
predictions generated with the model. Finally, we evaluate the cor-
relations between estimated parameters. Because of such correla-
tions we may not be able to determine a unique set of parameters as
best fits, but instead we may obtain families of parameter solutions.

3.1. Goodness of Fit Since the measurement error is Gaussian distributed, the weighted
residuals are also Gaussian distributed with unit variance. There-
fore, the sum of squared residuals follows a w2 distribution.

XT
i¼1

XM
j¼1

Rij ðpÞ2 � w2ðpÞ: (10)

Intuitively we expect from a good fit that the deviations of the
model from the data should be of the same order as themeasurement
error, i.e., Rij � 1, which means that the sum in Eq. 10 should be
centered around T �M. A much larger w2 value than T �M indicates
some variation in the data which is not accounted for by the model.
This fact can be used to evaluate the quality of the fit in a GOF test
which gives the probability of observing an as large or larger value
than the value of w2(p ∗ ) at the minimum (5). However, since the
parameters were adjusted in order to minimize Eq. 7 the degrees of
freedom of the w2 distribution are dof ¼ T �M � P , where P is the
number of parameters. Usually a cut-off value such as Pr[w2dof (p

∗ )]
< 0. 05 is used to reject the fit. Note that an underestimation of
the measurements errors or non-normality of the errors also results
in an exceptionally large w2dof (p

∗ ) value, i.e., a small probability
Pr[w2dof (p

∗ )]. The GOF test is not powerful in detecting overfitting.
Overfitting results if a model, which is too complex, would also fit the
particular realization of themeasurement error and thus have a much
smaller value of w2dof (p

∗ ) than the expected value which is equal to
dof. A more appropriate way to detect overfitting is the comparison
with a simpler model through a likelihood ratio test (2).

3.2. Confidence

Intervals

The complexity of nonlinear optimization precludes a straightfor-
ward way of calculating confidence limits for parameter estimates.
However, we can employ an approximate result which is valid in the
limit of infinitely many data and complete parameter identifiability.
Specifically, one can relate the variance in the parameters to the
curvature of the w2dof (p

∗ ) function at its minimum in order to derive
parameter covariances and asymptotic confidence intervals (5).
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Intuitively, the curvature determines how well the minimum is
confined and therefore how well parameter estimates can be
defined. The curvature of w2dof (p

∗ ) at the minimum is determined
by the dof 	P matrix of second derivatives, the so-called Fisher
information matrix (FIM).

FIM ¼ ð@2Rij=@p
2
l Þ � J T J : (11)

The approximation in Eq. 11 neglects the second derivative
terms but is computationally inexpensive as J

pl
ij ¼ ð@Rij=@plÞ is

the calculated gradient matrix of the residuals during minimization.
The covariance of the parameters C is related to the inverse of the
FIM as

C ¼ 2ðFIM Þ�1: (12)

Asymptotic confidence intervals can be calculated by taking
into account the distribution of the w2 values, which are approxi-
mately Gaussian for large degrees of freedom. The 95% confidence
intervals are given by

p� 
 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCÞ

p
: (13)

Symmetric confidence intervals are problematic if a parameter
estimate is close to the boundary of the admissible parameter space.
Moreover, the approximation Eq. 13 gives misleading results
whenever the above-stated assumptions are heavily violated, a fact
which can be difficult to evaluate beforehand (7).

3.3. Bootstrap This method offers an alternative to the asymptotic approximation
of parameter uncertainties. It is a heuristic but nevertheless exact
way of determining parameter uncertainties. Bootstrap methods
construct an empirical distribution of the parameter estimates by a
repeated data resampling and consecutive parameter estimation.
Parameter uncertainties can be inferred from the shape of the
empirical parameter distribution (8). The elegance and simplicity
of the bootstrap comes at a price. As it involves many parameter
estimations, it is computationally more expensive.

3.4. Parameter

Correlation and

Identifiability

Frequently, the optimization procedure does not yield a unique
optimal parameter set, because there is no unique optimal w2(p∗)
value given the available data. In this case the value of some or all
parameters is nonidentifiable. Nonidentifiability is the result of a
nonunique w2 minimum, which can be caused, e.g., by a very flat
w2 landscape. The later implies a functional relation between para-
meters along which the w2 value is unaltered. Parameter estimates
appear highly correlated if this functional relationship is linear.
Hengl et al. (9) suggest an approach based on mutual information
and bootstrap to detect parameter dependencies taking many,
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equally well-fitting, parameter estimates as an input. This heuristic
approach is particularly easy to apply as it does not require any
a priori knowledge on the model structure.

There are three common ways to deal with nonidentifiability.
One solution is to fix some of the nonidentifiable parameter at
educated values and only estimate the remaining parameters.
These estimates are of course biased since their optimum is in a
functional relation to the fixed parameters. Alternatively,
subsequent analyses can be based on all admissible parameter sets
and the parameter sets can then be clustered according to the
predictions derived from them. A third approach might be to
reduce the model such that it does not contain the nonidentifiable
parameters, e.g., by phenomenological descriptions or timescale
separation techniques (10). It is noteworthy that nonidentifiability
of parameters does not imply a poor fit to the data, but that
parameter values cannot be constrained to a unique value. The
predictive power of the model will therefore be limited to model
predictions that are not sensitive to nonidentifiable parameters.

4. An Application:
TGFb Signaling

We now apply the above-mentioned methods to a specific example,
the TGFb-signaling pathway. We will concentrate on a previously
published TGFb-signaling model (11) which is extended by a
transcriptional negative feedback involving an inhibitory Smad.
An outline of the TGFb model is presented in Fig. 1. The model
consists of 18 variables and 19 kinetic rate constants, most of which
have been determined in previous studies (11; 12). A brief recapit-
ulation of the system dynamics is given in the caption of Fig. 1.
A practical guideline should offer means to easily recapitulate the
main analysis steps. We therefore provide for the interested reader
the model as well as all functions in MATLAB format to reiterate
the results presented in this section by own computer simulations
from the authors web page (http://www.bsse.ethz.ch/cobi). The
experienced programmer can easily extend the code for own mod-
eling projects.

4.1. Sensitivities In order to better understand the functioning of the complex
network, we will first turn our attention to the sensitivities of the
model output with respect to the model parameters. Figure 2
summarizes our results. The accompanying MATLAB script script_

sensitivity.m can be used to reproduce the results. Panel a shows
time courses of the stimulation protocol and the output variable
(nuclear Smad2∗ /Smad4 complex). We stimulate the model by
an initial TGFb pulse and apply an inhibitor of TGFb-receptor
auto-phosphorylation after 3h for a duration of one hour.
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This stimulation protocol results in a complex response of the
model. Note that the initial transient dynamics after stimulation
is very fast due to the high affinity of TGFb to its receptor. Panel
b shows the time-resolved control coefficients of the five, most
influential parameters controlling the dynamics of the nuclear
Smad2∗/Smad4 complex which is our model output of interest.

Fig. 1. Outline of the TGFb model adopted from (11) including an inhibitory Smad. TGFb binds with strong affinity to
the receptor. The receptor complex gets autophosphorylated and signals by enhancing the phosphorylation of Smad2.
The active form of Smad2 can either form Smad2 dimers or heterodimerize with Smad4. The Smads and their complexes
can shuttle between the cytoplasm and the nucleus. The effect of a phosphatase (dephosphorylation of Smad2) is only
considered in the nuclear compartment. The Smad2–Smad4 heterodimer serves as a transcription factor for the
production of I-Smad mRNA. The mRNA needs to transfer to the cytoplasm to be translated into I-Smad protein. Finally
the I-Smad can bind to the active ligand–receptor complex and decrease the total amount of the initial signal, thereby
acting s as an inhibitor. The respective rate constants of each reaction are indicated as k1 � k19 and the complex import
factor (CIF).
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The time-dependent control coefficients are normalized sensitiv-
ities defined as

Cmi
pj
ðtÞ ¼ pj

½mi�ðtÞ S
mi
pj
ðtÞ; (14)

where [mi](t) denotes the time-dependent concentration of the ith
model output. The control coefficients of parameter k7 (Smad2 phos-
phorylation rate) and k10 (Smad compex formation rate) are positive
during the whole time course. Increasing these parameter will always
lead to an elevation in the level of nuclear Smad2∗ /Smad4. On the
contrary, k11 (complexdissociation rate) and k13 (Smad2dephosphor-
ylation rate) have mostly a negative effect with the strongest impact
during the application of the TGFb phosphorylation inhibitor. Note
that the impact of a change in the complex import factor (CIF) can
have a positive or a negative effect on the nuclear Smad2∗ /Smad4
concentration depending on the time point of a change. The remain-
ing model parameters have a lower, but nevertheless nonzero impact
on the nuclear Smad2∗ /Smad4 levels. In general, we expect para-
meters with small overall control coefficients to be difficult to identify.
Parameters with strong correlations in the temporal profile of their
control coefficients point to a strong underlying functional link and
will also be correlated when estimated from data.

Next, we focus on the sensitivity of the steady-state levels with
respect to all model parameters, again in terms of control coeffi-
cients. Figure 2c shows a clustergram of the steady-state control

Fig. 2. Sensitivity analysis of the TGF-signaling model. (a) Time course of the stimulation protocol and the system output,
nuclear Smad2 ∗ /Smad4 complex. (b) Time-resolved control coefficients of parameters controlling the dynamics of the
nuclear Smad2 ∗ /Smad4 complex, i.e., the output signal of the signaling network. For details, see main text. (c)
Clustergram of the steady-state control coefficients.
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coefficients in which rows represent observables and columns rep-
resent parameters. Rows and columns of the clustergram are sorted
such as to maximize the similarity between neighboring row- and
column vectors. In this way, observables and parameters with simi-
lar control coefficients (and thus similar function) across their
respective dimension are grouped closely to each other. Figure 2c
highlights two groups of control coefficients which are all related to
the phosphorylated observables. They show either a decrease
(upper-left, blue cluster) or an increase (upper-right, red cluster)
in the concentration of the phosphoforms. The latter set of para-
meters include the Smad phosporylation rate and the I-Smad deg-
radation rate (k19) while the former include the dephosphorylation
rate of nuclear Smad and the I-Smad association rate to the active
receptor (k5). Some parameters (k1, k6, and k16) have very low
overall control coefficients, and we anticipate problems in estimat-
ing these parameters from steady-state data. In conclusion, sensi-
tivity analysis can provide a first glimpse to the functioning of a
complex model and allows to group reactions and parameters with
similar impact on the system output into functional groups.

4.2. Parameter

Estimation

We now turn to the inverse problem: the estimation of model
parameters from experimental data. The interested reader can
reiterate our results with the MATLAB script script_fit.m provided
on the authors web site. To this end, we simulate data, including
measurement errors, in order to estimate the original parameter
values used for model simulation. This allows us to evaluate the
performance of the fitting procedure as we know the true parameter
values underlying our data. We apply the same stimulation protocol
as in Fig. 2a and estimating all 19 model parameters given that all
model species except the two mRNA species of I-Smad are
observed. The simulated data includes 20 data points per species
and 10% measurement error. Figure 3a shows a fit of the active
receptor and nuclear Smad2∗ /Smad4 trajectories to a simulated
data set (w2342 ¼ 365.2, Pr[X � w2342] ¼ 0.19). The color-shaded
area underlying each trajectory is the approximated uncertainty of a
trajectory based on the uncertainty in the parameter estimates. It is
calculated by error propagation as

Cov½yðtÞ� ¼ S
y
pðtÞCSypðtÞT ; (15)

where Sp
y is the matrix of the sensitivities of the observations

defined by Eq. 1 and C is the parameter covariance matrix deter-
mined by Eq. 12. Correlations between the parameter estimates
are shown in panel b. It is apparent that all parameter related with
nuclear import/export and complex formation/dissociation are
highly correlated. Additionally, parameters related to the TGFb
ligand/receptor interaction show a large positive correlation.
Since this interaction happens on a fast timescale due to a high
TGFb receptor affinity the parameters cannot be well identified
with the given temporal resolution of the data. Additionally, all
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parameters related to the I-Smad expression are highly correlated.
This is in part expected as the I-Smad mRNA states are not
observed and therefore parameters related to the mRNA dynamics
cannot be inferred from the data. Note that a strong correlation
does not necessarily imply a bad identification as the coefficient of
variation for the single parameters can still be very small. We will
focus on these intrinsic variations in the next paragraph.

Instead of determining correlations by a single fit as in Fig. 3a,
we next investigated parameter uncertainties and correlations
arising from many fits to data sets that only differ in the noise

Fig. 3. Parameter estimation in the TGFbmodel. The model was fitted to 16 observations (all model species except the two
mRNA species of I-Smad; 20 data points each, 10% measurement error) optimizing 19 parameters. (a–b) Fit to one
representative data set. (a) Data and time courses of phosphorylated TGF receptor complex and nuclear, phosphorylated
Smad2/Smad4. Error bars denote data mean and standard deviation. Gray-shaded areas highlight error intervals for the
trajectories calculated by error propagation (Eq. 15). (b) Correlation matrix of parameter estimates from fit in (a). (c–e)
Evaluation of the expected variance in parameter estimates. Parameters were fitted to 100 data sets, each with a different
realization of the measurement noise. (c) Box plots of estimated parameter sets (median¼red line, 25% and 75%
quantiles¼blue lines, 5% and 95% quantiles¼black lines, red asterisk¼outliers). Parameter-fitting ranges are indicated in
light gray, true parameter values are given in dark gray. (d,e) Scatter plots revealing a functional relation between the
estimates for k1 and k2 (d) and k8 and CIF (e).
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realization. The corresponding MATLAB script is script_multi_fit.m.
This strategy is similar to a bootstrap in case of a sufficiently high
number of replicates per measurement point and reflects more
accurately the expected parameter uncertainties than a single fit
does. It also allows to clarify the expected accuracy in parameter
estimates given the experimental design and measurement error.
Figure 3c shows boxplots of the optimized parameter estimates
from 100 data sets. Parameter limits used for the estimation are
indicated as light gray bars. Some parameter estimates have a small
variance and nicely fit the true parameter values indicated as dark
gray bars. Some parameters can be sufficiently well identified
despite having considerable correlations, e.g., k7 and k13. How-
ever, most parameter estimates have a large variance and do not
match the true parameter on average. In fact, a closer look at the
parameter distributions (e.g., by means of (9)) reveals a strong
functional dependence with other parameters, meaning that they
cannot be identified under the given experimental setup.
Figure 3d, e shows two representative scatter plots of pairs of
parameter estimates which are functionally related. The hyper-
bolic relation between the estimates of k8 and CIF is apparent
from the model formulation, as CIF is only a scaling factor for the
import rate of the complexes. For other functional relations, the
underlying mechanism is less clear. Most parameters related to
I-Smad expression, which is only observed on the protein level,
cannot be well identified. Generally, unobserved processes will
corrupt the identifiablity of the model parameters. It should be
noted that nonidentifiability due to a lack of sensitivity, which is
sometimes interpreted as systems robustness, does not imply a
lack in functionality of the respective parameters or processes.
Sensitivities are always dependent on the particular way of defin-
ing and measuring a system output. A focussed, and necessarily
limited, investigation cannot in general assess functionality in a
larger context. This highlights the need for appropriate experi-
ments and mathematical models which are designed for a particu-
lar question.

5. Conclusion

Parameter estimation from experimental data is a central part of
modeling and analyzing biological signaling networks. It is, in
general, an iterative process, and robust and efficient algorithms
are key to obtain good estimates with reasonable computational
effort. This chapter summarizes the main steps to attain these goals.
The optimization problem is formulated in terms of a likelihood
function and a gradient-based minimization algorithm is suggested
to determine the parameter set that maximizes the likelihood. It is
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important to subsequently analyze the GOF and to derive confi-
dence intervals for the parameter estimates. Approximate symmet-
ric confidence intervals can be formulated in terms of the variance
in the data and parameter sensitivities. More accurate estimates can
be obtained with computationally more demanding Bootstrap
methods. Before and after the regression the identifiability of para-
meters should be analyzed and the number of parameters in the
model should either be reduced accordingly or parameters should
be excluded from the estimation. The further analysis of the model
should, in any case, consider all admissible parameter sets and
cluster these according to the predictions of the model.
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